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DEVELOPMENT OF A SECOND-ORDER CLOSURE MODEL
FOR COMPUTATION OF TURBULENT DIFFUSION FLAMES

by Ashok K. Varma and Coleman duP. Donaldson

Aeronautical Research Associates of Princeton, Inc.

ABSTRACT

A "typical eddy" box model for the second-order closure of
turbulent, multi-species, reacting flows has been developed.
The model structure is quite general and is valid for an arbitrary
number of species. For the case of a reaction involving three
specles, the nine model parameters are determined from equations
for the nine independent first- and second-order correlations:

& , B, T, a'B' ,a'y' , B'y' , ', B'T" , and T'T' . The
model enables calculation of any higher-order correlation involving
mass fractions, temperatures, and reaction rates in terms of first-
and second-order correlations. Model predictions for the reaction
rate are in very good agreement with exact solutions of the reaction
rate equations for a number of assumed flow distributions.

INTRODUCTION

Recent advances in the analysis of turbulent flows by closure
of the transport equations for various Reynolds stresses at the
second-order level have resulted in a deeper understanding of the
physics of turbulent flows that could not be obtained by classical
first-order closure methods such as the eddy viscosity method.
A.R.A.P. has been in the forefront of the application of second-
order modeling techniques to the calculation of turbulent shear
flows. We have successfully applied these techniques to a variety
of flow problems including incompressible and compressible free
shear layers and boundary layers (ref. 1), simulation of the flow
in a HF chemical laser (ref. 2), behavior of the planetary boundary
layer (ref. 3), and the decay of axisymmetric vortices (ref. U4).

In the course of these studies, we have developed and tested models
for a large number of third-order correlations that appear in the
transport equations for the second-order correlations. These models
will have direct application in our current development of a
computer program to analyze turbulent reacting flows.

The analysis of turbulent, multi-species, reacting flows 1is an
example of the kind of problem that requires a more sophisticated
approach than the eddy viscosity method. During the past two years,
AR.A.P. has been developing an invariant second-order coupled
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diffusion and chemistry model with support from NASA, EPA, and DOT.
The model has been used to study a number of atmospheric (incom-
pressible) chemistry problems such as the dispersal of pollutants
from industrial stacks and highways, the behavior of the far wake
of the SST exhaust, and other similar problems (ref. 5). These
studies demonstrated that there are indeed real world atmospheric
pollution problems in which neglect of the fluctuations of
concentrations of reacting species introduces significant errors.
Neglect of the effects of inhomogeneous mixing could result in
order of magnitude errors in the chemical reaction rates. An
approximate closure scheme for the chemical submodel which conforms
to the principles of invariant modeling and which accounts for the
effects of inhomogeneous mixing over a wide range of conditions was
developed.

The above-mentioned studies of modeling of reacting flows were
limited to problems involving low heat release in which the fluctua-
tions in the reaction rate could be neglected. However, the success
of these studies raised the distinct possibility that by combining
the compressible flow models with further advances in chemical
modeling, it will be possible to construct a second-order closure
model for the computation of compressible flow problems involving
highly exothermic chemical reactions, such as the analysis of a
turbulent diffusion flame. A.R.A.P. is currently being funded by
NASA under Contract NAS1-12412 to develop the models for third- order
correlations involving fluctuations of species concentrations,
temperatures, and reaction rates. This report details the develogL
ment of these models over the past year.

CHEMICAL KINETIC EQUATIONS

Consider an irreversible single-step reaction between chemi-
cal species o and B to form vy .

a + B >y (1)
We will primarily deal with such a three-species system, although
the model can easily be extended to reacticns involving more
species; for example,

a + B>y + ¢

The reaction rate equations may be written

el - klalrs]
(2)
3L8) - kralre]
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If, instead of the molar concentrations [a] and [B] ,
Egs. (2) are written in terms of the mass fractions o and B,
the reaction equations become

9o _ = 1 P_
5t - " K 0B kp =k Wy (3)
9B _ = 1w P
3t~ T KooB ky =k W (4

where p 1is the density, wu and WB are the molecular weights

of species o and B , respectively, and kl and k2 are the
reaction rate constants.

Equations (3) and (4) specify the local instantaneous rate
of change of the concentration of the reactants. In a turbulent

reacting flow, these equations may be written in terms of the mean

and fluctuating values by writing a given quantity ¢ as the sum
of a mean and fluctuating part

¢ = ¢+ 9 (5)

If Egs. (3) and (4) are expanded by the scheme given in (5), the
result is

g—% + %%'— = -(El + ki)(& + a')(B + B)
= (k, + k])(aB + @' + Ba' + a'B") (6)
and
BB |\ 3B' L (k4 k1)(5F + ap' + Ba' + a'B') (7)
5t T 3% 2 T %2

The chemical kinetic equations for the average rates of change of
the concentrations of a and B8 then become

@
QI

55 = - kj(aB +a'B') - & kiB' - B kja' - kla'g' (8)
and
ﬁ:_.}z (aB + a'B') - a k!B —Ek'a' - klo'B! (9)
ot 2 2 2 2
3



In a second-order closure scheme, one generally carries
equations for all the independent second-order correlations of
the fluctuations. Chemical kinetic equations can be easily
derived for terms such as O'B' as follows. By subtracting
Egs. (8) and (9) from (6) and (7), respectively, one obtains

?t—' = - Elasv _ Eléav _ El(uvsv - a'B') - &Bki
- a(kyB' - k|B') - B(kja' - kla') - (kja'B' - kja'f')
(10)

38! _ _ f §8' - KB’ - K,(a'B' - a'f') - aBk!

3t - 2 2 2 2
- (k' - kAB") - Blkja' - kha') - (kja'B' - kja'B')

(11)
Multiplying (10) by B8' , (11) by a' , and averaging the sum
of the resulting expressions

oo’

58"
—_— 1 —_—
e Y At

%_E a'B' = B!

= -k (GB'8" + Ba'B' + a'B'B")

- aBkiB' - & kJB'8' - B kla'B' - kla'g's'

- Eg(aa'B' + Ba'a' + a'a'f')

AR 'y ! o Albta'R! — Bl'a'a!'! - k'a'alr!
a8k2a akla'B Bkzu o kla'a B (12)
Expressions for other independent second-order correlations
can be obtalned in a similar fashion. Equations (8), (9), and
(12) contain higher-order correlations, such as the terms
a'g'g' , kia'B' , kéa'B' s kia'a' s kia'B'B' , etc., which now

have to be modeled in terms of the mean quantities a , 8 , T ,
etc., and the second-order correlations a'B8' , a'a' , B'Y' ,
a'T' , etc. Once all the higher-order terms are modeled, we
have a closed system of equations for the means and the inde-
pendent second-order correlations which can be solved. We now

have to develop suitable models for the various higher-order
correlations.
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"TYPICAL EDDY" BOX MODEL

In the second-order closure of the chemical submodel for
a reacting mixture of three speciles, let us identify what
information is available to us to construct a general model for
the higher-order correlations and what the constraints are on
the model.

Some effort was devoted to the development of analytical
model expressions for the third-order correlations following
procedures similar to those used in reference 5 for low heat
release reactions. These were not entirely successful because
of the lack of proper bounds on third-order terms like k'a'a' .
It was decided to construct a "typical eddy" for modeling
concentration, temperature, and reaction rate fluctuations. A
similar concept is used for modeling other correlations. For
example, dissipation of turbulent kinetic energy is modeled as
though all the dissipation was due to eddies of a single scale
length. The tendency towards isotropy is modeled in terms of
another scale length, and so on.

First, let us consider how many variables are at our disposal
to construct the model of a "typical eddy" for the chemistry sub-
model. We have the equations for the mean terms

a,B,and T (13)

Note that Y 1s not an independent variable since
o+ B +y =1

Further, we have equations for

a'B' , a'y' , B'y' , a'T' , B'T' , and T2 (14)

These are the only species and/or temperature second-order
correlations that are independent since a' + B' + y' 2 0
and, therefore,

avz - _ (U'B' + ath)
B2 = ~ (a'B' + B'Y")
y'? = - (a'y' + B'Y')

Y!Tl - (Q'T' + B'TI)

We note that if we have a'T' or B'T' , since the reaction
rate terms kj and kp are known functions of T (for example,
an Arrhenius relationship), we should be able to write expres-

3
sions for kia' s kiB' , etc. One of our problems in selecting




a model is to obtain expressions for kia' s kiu'B' , etc. in

terms of the known quantities (13) and (14) which are completely
consistent with our expressions for a'T' and a'f'T'

As listed above, we have nine independent parameters (Egs.
(13) and (14)) to construct a typical eddy for a mixture of
three species. If we remain at a particular place in a fluid
and watch the turbulent flow go by and ask, "What does a typical
eddy look 1ike?" or "What is the typical repetitive structure of
the flow?", the answer will be some variation of the following.
Consider two unmixed streams of o and B, which mix and react
to form Yy . In the early stages of the mixing, one will observe
large amounts of pure o and B . Some reaction would have
occurred and some pure product Yy may pass by. There would be
diffusion taking place and we expect to observe fluid elements
consisting of differing proportions of o + 8 and a + B + ¥
(wherein the reaction is proceeding), a + y and B8 + vy . At a
later time, one would expect less frequent fluid masses consisting
of pure a and B8 Dbut the basic structure of the eddy will be the
same. With this physical and intuitive idea of the flow, we now
try to construct a model. The degrees of freedom of the model are
limited by the number of independent parameters available.

Let us also set down other desirable features of the model
and certain constraints the model must satisfy.

1. The three-species model should be capable of
collapsing tc the case of one or two species
and be logically extendible to larger number
of species.

2. The model should not have to label the three
species; that is, which are the reactants and
which are the products? Further, the model
should be capable of handling a nonreacting
mixture of fthree constituents.

3. The model must satisfy the_end of the reaction
constraints; that is, if o and B are the
reactants,

a'B' = - a - B
a'28' = a%B - a'?g
Consider now the model for a mixture of three species. In

the absence of any temperature fluctuations, there are only five
independent parameters with which to construct the typical eddy.
These are

a , B , a'B'" , a'y', and B'y' (15)
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A desirable "typical eddy" structure, shown in Figure la,
requires as many as 11 parameters, €, ™ Eg and ku - k8

Obviously, we cannof have this general a model. A large number
of simpler models were investigated. The proportions of the
various materials in cells 4 through 7 can be fixed first. If
cell 7, in which o, B , and Yy exist together, is part of the
model, cells 4, 5, and 6 could be considered to have either

equal amounts of the two constituents or have them in proportion
to the mean concentrations. In order to be able to consider the
case of nonreacting mixing of three species for which the end
result is a uniformly mixed flow, the concentrations in cell 7
must be proportiocnal to the mean values. If cell 7 is taken

out of the model (this cell is only absolutely necessary for
accurate computation when the reaction rates are slow compared

to diffusion processes), the concentratiors in cells 4, 5, and 6
must be in proportion to the mean values, for the model should

be capable of handling a confined flame in which the reactants
are not available in stoichiometric proportions. Then, the end
result 1s a uniformly mixed flow of a and y (or B and Yy )
and the amounts ¢f a and Yy in cell 5 should be proportiocnal
to the means. By symmetry, we must do the same for cells 4 and 6.

With the above-ncted assumptions, we have sixX unknowns,
€, > €g > in the model. Varlious possible models were investigated.

Some of the models which were rejected are sketched in Figures 1b
and lc., These failed feor different reasons — lack of symmetry,
not satisfying the reaction end limit, ete. :

After extensive studies, we were left with two models which
met all the conditions and tests we applied to them and appeared
to be quite satisfactory. The predictions of these models were
compared to the true chemisfry results for a number of assumed
flow distributions, and the results were very good. The models
and the tests are discussed later in this report.

Both of these models were a significant lmprovement over
"classical" chemistry calculations, but in some flows Model I
showed better results while Model II did better in other flows.
A seven cell, six parameter model combining the better features
of these two models appeared to be desirable, but it would
require an additional independent parameter, and we could not
find a consistent way of introduclng another parameter. In the
last month we have developed a new seven-cell model (Model III)
which still requires only five parameters. This model 1is
discussed in a later section "Description of Model III." It must
be tested more completely in the same way that Models I and Il
were tested, but the final model is so closely related to these
two models that we expert i1t 0o show very similar results.
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Figure 1. Some of the rejected "typical eddy" cell models




DISCUSSION OF MODELS I AND II

We now consider the joint species temperature models.
With no temperature fluctuations, there are five. parameters

(a, B , a'B' , a'y' , B'y' ) for the three-component species
model. For varilable temperatures, we have four additional

parameters (T , T'T' , o'T' , B'T' ). For a mixture of two

species, we have a total of five parameters: a , a'Bf' , T

T'T' , a'T' . For the case when only one species is present,
the model must admit temperature fluctuations whose distribu-
tion functions are almost Gaussian, and to allow this result we
assume that in the temperature distribution functions each cell
spends one-half its time at a temperature AT above its base
temperature. In the case of one species, the AT 1is governed
by wall boundary conditions and/or viscous heating within the
shear layer. The one- and two-speciles models are shown in
Pigure 2.

The six cell, three-species models I and II are shown in
Figures 3 and 4. The temperature model has four unknowns: T

T
B 2 TY

are the appropriately weighted means of the three base temper-
atures for the three species.

Q2
, and AT . The temperatures of the other three cells

The concentration model and the temperature model allows
one to compute any higher-order correlation of scalar fluctua-
tions involving concentrations or temperatures. The second and
higher—-order correlations involving the fluctuations of the
reaction rate constant k' can also be calculated, because 1t
is possible to calculate the instantaneous reaction rate k and
plot the reaction rate distributions for each half_cell as shown
in the figure. Then it 1is possible to calculate k'a' , k'B' or
any other higher-order correlation of k' with fluctuations in
concentration or temperature.

The three-species models described above have been compared
against exact solutions of the reaction rate equations. The
procedure is as follows. A number of base flows (assumed concen-
tration and temperature distributions) are set up. A computer
program has been written to calculate the nine model parameters
from the values of the nine first- and second-order correlations
for a given base flow at specified modeling times. The program
then calculates various moments for the base flow as the reactions
proceed in time. A comparison of the model predictions and the
base flow (or true) chemistry is displayed using a plotting
routine.

The following reaction rate expression has been used for
the tests reported here:
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T, T2, ¢'T', B'T’
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CpsTg=ﬁa5CpB;534L76 CP,;TY

E
k,=AT." exp(—R—#i-)

note kK#Kk(T)

Model I for a typical eddy in three-species flow
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?; T,Z’ a’T’, [3'T'

CpaTa=aaCp  Tat BaCpgTp*
+74prTy

§p5T5 =agCpyTatrs CPyTY
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E
Ki=AT;" exp(—-’.ﬁ.i—)

note kK # k(T)

Model II for a typical eddy in three-species flow
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k= 1.5 x 10 ‘exp ( - L@l@)

RT

This corresponds to the reaction

in a HF chemical laser. A.R.A.P. is studying the turbulent
mixing and reaction in these devices with support from ARPA.

Filgure 5 shcws first the influence of variou
the exprezssion for do,9f7 (eq. {(£Y). An exact s

terms 1n
o 1o
the chremical kineftin eguarinneg was obtained for b

t on '\_/f

se Tlow 1,

U
S )
and ail tne moments ol inrteresy wers generated. The graph
clearly i1llustrates the Inportance of t“king the second-order

k'a' and k'8’ , and the third-order k‘a'B correlation
count for predicting the reaction rate.

Figures 6 and 7 present ths Its ¢l modellng base flow
1 fcr fthe variable ftemperature and the constant temperature
cases, The parameters of the e flow are shown c¢n the figure.
The "classical chemistry results are obtained as da/dt =
kK(T) - a B ; that is, by ignoring the furbulent fluctuations.
Mcdels I and 17 are established at time zero from the parameters
I the basge flow distributicn function and the models are then
allowed to prcceed in time. Tf can be seen that the inclusion
of ftemperature fluctuztions leads to larger differences between
the classical and true results. The model predictions in both
cases show a very signiflicant 1mpr\vement cver the classical
results, but Model 1 is definitely superior for this flow.

Regsults for three other

base [ ive presented in Filgures
! Fhrough 173, For base flow 2, Lhe lecteq temperstiare: are
gquite nigh, and the reaction vrate values are virtually saturated.
Consequently, Figures 8 (variable temperatures) and 9 {ccnstant
temperatures) 42 not exhinit large differences. The model flows
are markedly tefter Than ~lassical chemlistry calculations In
both cases, but Model I does better in one case while Model 1T
follows better tne frue chemistry result in the other case. For
case [{low 3, the results shown in Flgures 10and 11 Indicate that
Mcdel 1 is superior to ¥odel 11. Finally, tor base flow 4, we

O]
D O
2]
—+
D w
—

"hiat for the variable temperature case (fig. 120, Model II

woulid be fthe preferred model, but the constant temperature
studiegs in Figure 13 suggest that Model I is the better model.

In all these cases studied, the model

i predictiong are
significantly vetter iLhan rias

!
lecal ehemlisfiry calenlaticons and
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one or the other of the two models shows good agreement with
the exact solution of the chemical kinetic equations. We have
now developed a seven-cell model which incorporates the better
features of the two models discussed above. This model, Model
ITII, is described in the next section.

DESCRIPTION OF MODEL III

For this mecdel, the typical eddy of extent unity in time
is considered to have the following structure. For a time g3

the eddy contains only the species o . For a time €5 the
eddy contains only the species B8 , and for time ¢ the eddy
contains only the species vy . For time equal to €y , €5 , and

€6 , the eddy 1s assumed to contain 1/2 a and 1/2 B8 , 1/2 a
and 1/2 ¥ , and 1 /2 6 and 1/2 v by mass, respectively, in a
state of molecular mixedness. In addition, we assume that for a

time
o= (1 - 2R -2 ) (- }ﬁg%Ll
‘ | aB | | ay | BY |

the eddy contains o , B and vy uniformly mixed and in propor-
ticn to the mean mass fractions o , B, and Y . Since the
fotal extent of the eddy is unity,

=1 - <1 BEAEAY <1 -Ioc—l%i|>(l - @l
| B | | ay | By |

Thus, the model has only five unknowns necessary to define the
eddy which are determined by the five available equations for

a , B , a'8' , a'y" , and B'y' . The temperature and the
reaction rate distributions are set up in the same way as for
Models I and II. Figure 14 illustrates the complete seven-cell
model.

This model is currently being tested by comparison of model
predictions to exact solufions of the chemical rate equations.
Basically it i1s a combination of the two previous models, and we
expect the results of these tests to be quite satisfactory. The
model can be extended to the case of four species in a straight-
forward manner and collapses cerrectly to the cases of flows
involving one or two species.,

23




! — @.,B,a'Ba’y’ B'y’
Y —
B4 Ys Y6 ( /Bl >(|_ _fl,>(|_| 617/
lal, B ay I\ 15
ag | as|Be| =

AT - —
AT -T'-Trz' al-rz ‘BITV
AT AT [] AF'T _
r— AT | Cp4T4=d4CpaTa+B4CpBTB
AT -
Tb T4 T5 .T7 -—
Ta Cpg Ts=BschTB"' Y6 Cry Ty
0o € €, ICD7T7=3CPQT“+BCPBT3+
2 2 -
YCPYT)’
E:A
ki=‘A1]"ex;>(--;;?i)
“2 te K £k(T)
k note
Ko kg | © | K7
K| ke
0] €, € |
2 2

three-species "typical eddy" model

Figure 14. Seven-cell,
MODEL III
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CONCLUSIONS

A "typical eddy" box model for the second-order closure
of turbulent reacting flows has been developed. The model
structure is quite general and is valid for an arbitrary number
of species. Model predictions are significantly better than
classical chemistry (involving only the means) computations and
are in good agreement with exact solutions of the reaction rate
equations for a number of assumed flow distributions.

The model enables calculation of any correlation of scalar
fluctuations involving concentrations, temperatures, and
reaction rates. It provides the capability of making a second-
order closure computation of turbulent flames and other flows
involving highly exothermic chemical reactions.
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